Data until 2023 -- processed with CCIC paper: cloud mask is based on 2B-CLDCLASS Data after 2023 -- processed after CCIC paper: cloud mask is based on 2B-CLDCLASS-LIDAR Note that you can access the data without downloading it with fsspec's sshfs (https://github.com/fsspec/sshfs). Below an example (if it doesn't work, check the package versions listed after the example): ```python import ccic import sshfs # https://github.com/fsspec/sshfs import xarray as xr # Establish a remote filesystem connection fs = sshfs.SSHFileSystem( 'sun.rss.chalmers.se', username='ccic', client_keys=['/path/to/authorized/ssh_key'] ) # Get the first CPCIR retrieval of 2025 # The file name could be spelt out, but this shows a method of fsspec file_path = sorted(list(fs.glob('/record/cpcir/2025/*zarr')))[0] # Open the remote Zarr file ds = xr.open_zarr(fs.get_mapper(file_path)) ``` Note: the code above was tested with `sshfs` 2024.9.0, and the output of `xarray.show_versions()` is ``` INSTALLED VERSIONS ------------------ commit: None python: 3.10.13 | packaged by conda-forge | (main, Dec 23 2023, 15:36:39) [GCC 12.3.0] python-bits: 64 OS: Linux OS-release: 6.8.0-51-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.14.3 libnetcdf: 4.9.2 xarray: 2024.2.0 pandas: 2.2.1 numpy: 1.26.4 scipy: 1.12.0 netCDF4: 1.6.5 pydap: None h5netcdf: 1.3.0 h5py: 3.10.0 Nio: None zarr: 2.17.1 cftime: 1.6.3 nc_time_axis: None iris: 3.8.1 bottleneck: 1.3.8 dask: 2024.2.1 distributed: 2024.2.1 matplotlib: 3.8.3 cartopy: 0.22.0 seaborn: None numbagg: None fsspec: 2024.3.1 cupy: None pint: 0.23 sparse: None flox: None numpy_groupies: None setuptools: 69.1.1 pip: 24.0 conda: None pytest: 8.1.1 mypy: None IPython: 8.17.2 sphinx: 7.2.6 ```